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Abstract

Nitric oxide (NO) andmorphine have been coupled in many physiological as well as pathological processes. The present study examined the

involvement of the L-arginine/NO pathway in the anticonvulsant properties of systemic morphine (2–30 mg/kg) against electroshock seizures

(ECS) inmice.Morphine decreased the intensity of maximal electroshock seizures (MES) and increased the threshold for ECS. Neither the NOS

substrate L-arginine (30, 60, and 100mg/kg), the reversible nonspecific NOS inhibitorNG-nitro-L-arginine methyl ester (L-NAME; 3, 10, and 30

mg/kg), the irreversible specific inducible NOS inhibitor aminoguanidine (20, 50, and 100 mg/kg), nor the opioid receptor antagonist naloxone

(0.1, 0.3, and 1 mg/kg) did alter per se the ECS threshold or the intensity of MES at doses used. However, both naloxone and L-NAME, but not

aminoguanidine, inhibited the anticonvulsant effects of morphine (30 mg/kg) against ECS, while L-arginine potentiated the anticonvulsant

effects of lower doses of morphine (2 or 10 mg/kg). Low doses of naloxone (0.1 or 0.3 mg/kg) or L-NAME (3 mg/kg), which did not alter

morphine effect per se, showed additive anticonvulsant effects against MES. Thus, the L-arginine/NO pathway seems to play a role in the

anticonvulsant properties of morphine against ECS and this mediation involves the constitutive, but not the inducible, form of nitric oxide

synthase.

D 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

Electroshock seizure (ECS) is the best-studied animal

model of generalized tonic–clonic seizures (Fisher, 1989).

Drugs able to inhibit ECS in animals are considered to be

candidate therapies for primary and secondary generalized

tonic–clonic epilepsies (Löscher and Schmidt, 1988).

Meanwhile, the activation of opioid receptors, either endo-

genously or through opioid receptor agonists, can induce

anticonvulsant and/or proconvulsant effects in different

seizure paradigms (Frenk, 1983; Lauretti et al., 1994;

Przewlocka et al., 1995; Sagratella and Massotti, 1982;

Tortella et al., 1985). In this regard, morphine and opioid

peptides exert anticonvulsant effects against maximal elec-

troshock seizures (MES) and increase the ECS threshold in

experimental animals (Berman and Adler, 1984; Frey,

1988; Karadag et al., 2000; Puglisi-Allegra et al., 1985).

This morphine-induced anticonvulsant property is mediated

by mu-opioid receptors as evidenced by a blockade by mu-

opioid receptor-sensitive low doses of opioid receptor

antagonists such as naloxone or naltrexone (Berman and

Adler, 1984; Czuczwar and Frey, 1986). Frey (1988)

reported that both mu-opioid and kappa-opioid receptors

could inhibit the anticonvulsant effect of morphine against

electroconvulsive seizure threshold. In a model using

graded seizure responses to suprathreshold cerebral electro-

shock in mice, morphine exerted a proconvulsant effect at

a non-mu-opioid receptor plus a simultaneous anticonvuls-

ant effect at a mu-opioid receptor, while delta-opioid

receptor blockade increased the seizure severity (Pinsky

et al., 1986). Moreover, the anticonvulsant effect of mor-

phine against electrical seizure probably involves increased

GABA and histamine release in brain (Karadag et al.,

2000; Sagratella and Massotti, 1982).

Nitric oxide (NO) is a small, membrane-diffusing

molecule synthesized from L-arginine by nitric oxide

synthase (NOS) that acts as a neuronal messenger in the

central nervous system (Bredt and Snyder, 1990; Bredt et
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al., 1990). Recently, morphine and NO have been coupled

in many physiological as well as pathological processes

including morphine-induced antinociception (Brignola et

al., 1994; Ferreira et al., 1991), tolerance and physical

dependence (Dambisya and Lee, 1996; Kolesnikov et al.,

1993), regulation of food intake (Calignano et al., 1993),

gastroprotection (Gyires, 1994), constipation (Calignano et

al., 1991), and suppression of lymphocyte proliferation

(Fecho et al., 1994). Moreover, morphine stimulates NO

production in the vasculature of rat median eminence

(Prevot et al., 1998; Stefano et al., 1997), implying a

NO-mediated mechanism to increase neurotransmitter

release. Furthermore, NO has modulatory effects on some

seizure models including those induced by excitatory

amino acids, while having limited effects on ECS (Baran

et al., 1997; Przegalinski et al., 1994, 1996; Urbanska et

al., 1996). We recently showed that NO is involved in

both anticonvulsant and proconvulsant effects induced by

different doses of morphine against seizures induced by

the GABA receptor antagonist pentylenetetrazole

(Homayoun et al., 2002a). In the present study, we

examined the possible involvement of nitricoxidergic

pathway in the anticonvulsant effect of morphine against

ECS and also assessed the role of inducible versus

constitutive NOS in this effect. For this purpose, we used

the NOS substrate L-arginine, the reversible nonspecific

NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME),

and the irreversible specific inhibitor of inducible nitric

oxide synthase (iNOS) aminoguanidine. The effects of

these agents on morphine-induced anticonvulsive prop-

erties were separately evaluated using ECS threshold and

the intensity of response to MES.

2. Materials and methods

2.1. Animals

Male NMRI mice (Pasteur Institute of Iran) weighing

24–30 g were used. The animals were housed in a temper-

ature-controlled room (24 ± 1 �C) on a 12-h light/dark cycle

with free access to food and water. All procedures were

carried out in accordance with institutional guidelines for

animal care and use and all possible measures were taken to

minimize the animals’ discomfort including immediate

euthanasia after acute experiments. Each animal was used

only once.

2.2. Drugs

The drugs used were L-arginine, L-NAME, morphine

sulfate (Sigma, Poole, UK), aminoguanidine (Sigma, St.

Louis, USA), and naloxone hydrochloride (Tolid-daru, Teh-

ran, Iran). All drugs were dissolved in physiological saline

solution to such concentrations that requisite doses were

administered in a volume of 10 ml/kg. In all experiments,

morphine was administered subcutaneously and all other

drugs were administered intraperitoneally.

2.3. Assessment of anticonvulsant activity

The MES test with suprathreshold stimulation was car-

ried out via ear clip electrodes by means of a stimulator that

delivered a fixed current of 50 mAwith a pulse frequency of

50 s� 1 for 0.2 s (Löscher and Lehman, 1996). The duration

of tonic flexion (TF) and tonic extension (TE) following

MES was recorded and the extensor–flexor ratio (TE/TF

ratio), known to be a reliable measure of seizure severity

(Swinyard, 1972), was calculated. A ratio larger for the test

group than for the control group indicates that the seizures

in the test group are more severe, and vice versa.

The threshold of ECS was determined using the

‘‘staircase’’ method adapted from Swinyard (1972). The

intensity of the stimulus delivered via ear clip electrodes

was varied by an up-and-down method in which the

current (with a pulse frequency of 50 s� 1 for 0.2 s)

was lowered or raised by 0.1 log intervals, depending on

the response of the animal previously tested (starting from

an initial baseline current of 10 mA). Each animal was

tested once. Thus, the current was increased to the next

increment if an animal failed to exhibit a full tonic

hindlimb extension, or alternatively decreased if full tonic

seizures were induced. The data thus generated in groups

of 15 mice were used to calculate the threshold current

inducing hindlimb extension in 50% of the mice (CC50

with confidence intervals for 95% probability) by the

method of Kimball et al. (1957).

2.4. Treatment

Groups of 10 animals were used in MES experiments

except for the saline control group (Fig. 1A), which con-

sisted of 16 animals. In ECS experiments, groups of 15

animals were used. In all experiments, morphine or saline

was administered 45 min before testing and all other tested

substances were administered 60 min before testing.

In the first series of experiments, the effects of

different doses of naloxone (0.1, 0.3, and 1 mg/kg), L-

NAME (3, 10, and 30 mg/kg), aminoguanidine (20, 50,

and 100 mg/kg), and L-arginine (30, 60, and 100 mg/

kg)—administered 60 min before testing—on the intens-

ity of MES was determined. In the second series of

experiments, the effects of different doses of morphine

(2, 5, 10, and 30 mg/kg) administered 45 min before

testing on MES were examined. Moreover, the effects of

the mentioned doses of naloxone, L-NAME, and amino-

guanidine, administered 15 min before 30 mg/kg mor-

phine and 60 min before testing on MES, were

determined. Moreover, the effects of L-NAME (10 mg/

kg) or aminoguanidine (100 mg/kg) prior to 5 mg/kg

morphine were examined using same pretest intervals.

The effects of L-arginine (30, 60, and 100 mg/kg),
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administered 15 min before 2 mg/kg morphine and 60

min before testing on MES, were also determined. In the

third series of experiments, the effects of concomitant

administration of lower doses of naloxone (0.1 or 0.3

mg/kg) and L-NAME (3 mg/kg), 15 min before either

saline or 30 mg/kg morphine and 60 min before testing,

were assessed. In the fourth series of experiments, ECS

threshold was determined in groups of mice receiving

saline or morphine (10 and 30 mg/kg) 45 min before

testing and also in other groups receiving a concomitant

administration of L-NAME (3 and 10 mg/kg) or amino-

guanidine (100 mg/kg) 60 min before testing, either alone

or in combination with 30 mg/kg morphine (45 min

before testing). Other groups in this experiment received

L-arginine (30 and 60 mg/kg) 60 min before testing,

either alone or in combination with 10 mg/kg morphine

(45 min before testing). Doses used were chosen based on

previously published works (Al-Shabanah et al., 2000; Deh-

pour et al., 1998; Karadag et al., 2000; Nahavandi et al.,

1999).

2.5. Statistics

Data are expressed as mean ± S.E.M. of 10 mice in

MES experiments and as CC50 with 95% confidence

intervals in ECS threshold experiments. In MES experi-

ments, a one-way analysis of variance (ANOVA), followed

by post hoc Student–Newman–Keuls test, was used to

compare the duration of TE or the TE/TF ratio between

different groups. In ECS threshold experiments, the sig-

nificance of differences between control and drug-treated

groups was calculated by the two-sided Student’s t test

Fig. 1. Effects of naloxone, L-NAME, L-arginine, and aminoguanidine (AG) on MES in the presence (C,D) or absence (A,B) of morphine in mice. (A,C) The

duration of TE and (B,D) the ratio of the duration of TE to the duration of TF (TE/TF). Morphine was administered 45 min and other drugs were administered

60 min before testing. Data are expressed as mean ± S.E.M. of 16 (saline control group in A and B) or 10 (other groups) animals. *P< .05, **P < .01,

***P < .001 compared to saline control group, and #P< .05, ##P < .01, ###P< .001 compared to the corresponding morphine group.
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(Löscher and Lehman, 1996). A probability level of .05

was accepted as significant.

3. Results

3.1. MES

As shown in Fig. 1, different doses of naloxone (0.1–1mg/

kg), L-NAME (3–30 mg/kg), aminoguanidine (20–100 mg/

kg), and L-arginine (30–100 mg/kg) did not alter the duration

of TE (Fig. 1A) or the TE/TF ratio (Fig. 1B) compared to the

control saline group (P>.05). Morphine dose-dependently

decreased both the duration of TE [Fig. 1C; F(4,45) = 6.22,

P < .001] and the TE/TF ratio [Fig. 1D; F(4,45) = 9.32,

P < .001]. In mice treated with 30 mg/kg morphine, both

naloxone [Fig. 1C: TE, F(4,45) = 8.10, P < .001; Fig. 1D: TE/

TF, F(4,45) = 9.66, P < .001] and L-NAME [Fig. 1C: TE,

F(4,45) = 6.82, P < .001; Fig. 1D: TE/TF, F(4,45) = 11.06,

P < .001], but not aminoguanidine [Fig. 1C: TE, F(4,45)

= 5.62, P < .001; Fig. 1D: TE/TF, F(4,45) = 10.48, P < .001;

post hoc P>.05], inhibited the anticonvulsant effect of mor-

phine. Similarly, in mice treated with 5 mg/kg morphine,

L-NAME [10 mg/kg; Fig. 1C: TE, F(3,36) = 4.31, P < .01;

Fig. 1D: TE/TF, F(3,36) = 3.79, P < .01; post hoc P>.05],

but not aminoguanidine [100 mg/kg; Fig. 1C: TE,

F(3,36) = 4.31, P < .01; Fig. 1D: TE/TF, F(3,36) = 6.88,

P < .001; post hoc P>.05] inhibited the anticonvulsant

effect of morphine. L-arginine at the dose range used did

not, by itself, alter the duration of TE or the TE/TF ratio

(P>.05), but potentiated the effect of 2 mg/kg morphine

against MES [Fig. 1C: TE, F(4,45) = 7.31, P < .001; Fig.

1D: TE/TF, F(4,45) = 6.81, P < .001].

As shown in Fig. 2, the combination of noneffective

doses of naloxone (0.1 and 0.3 mg/kg) and L-NAME (3 mg/

kg) per se significantly inhibited the anticonvulsant effect of

morphine [Fig. 2A: TE, F(5,54) = 5.51, P < .001; Fig. 2B:

TE/TF, F(5,54) = 7.45, P < .001]. On the other hand, the

combination of aminoguanidine (100 mg/kg) with naloxone

did not alter the effect of morphine (P>.05).

Fig. 2. Effects of concomitant administration of naloxone with L-NAME or

aminoguanidine (AG) in the presence of saline or morphine on MES in

mice. (A) The duration of TE and (B) the ratio of the duration of TE to the

duration of TF (TE/TF). Naloxone concomitant with L-NAME or

aminoguanidine was administered 15 min before either saline or morphine

(30 mg/kg) and 60 min before testing. Data are expressed as mean ± S.E.M.

of 10 animals. *P < .05 compared to saline control group, and #P < .05

compared to the group receiving morphine alone.

Fig. 3. Effects of different treatments on ECS threshold in mice. Seizure

thresholds are shown as the convulsive current (CC50) inducing tonic

seizures in 50% of mice per group, with confidence intervals for 95%

probability. Each group consisted of 15 mice. Saline or morphine was

administered 45 min before and L-NAME, aminoguanidine, or L-arginine

was administered 60 min before testing. *P < .05 compared to saline

control group, and #P< .05 compared to the corresponding morphine group.
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3.2. ECS threshold

As shown in Fig. 3, morphine (10 and 30 mg/kg)

significantly increased the ECS threshold (two-sided Stu-

dent’s t test, P < .05). This effect was inhibited by L-NAME

(3 and 10 mg/kg) in a dose-related manner but was not

affected by aminoguanidine. Moreover, 30 mg/kg L-argi-

nine, which did not alter the seizure threshold by itself,

significantly potentiated the effect of morphine (10 mg/kg)

in increasing ECS threshold (P < .05).

4. Discussion

Our data show that morphine-induced anticonvulsant

effect against ECS is reversible by L-NAME, but not by

aminoguanidine, while this effect is restored by a concom-

itant administration of a noneffective dose of L-arginine with

L-NAME. Moreover, L-NAME shows an additive effect with

naloxone in inhibiting morphine anticonvulsive property.

Morphine is reported to increase ECS threshold (Czucz-

war and Frey, 1986; Frey, 1988; Puglisi-Allegra et al.,

1985) and to decrease the intensity of convulsions induced

by MES (Berman and Adler, 1984; Karadag et al., 2000).

Our data in both models were consistently in favor of the

involvement of NO in anticonvulsant effects of morphine.

Neither L-arginine nor the NOS inhibitors per se affected

ECS susceptibility, which is in accordance with previous

reports (Borowicz et al., 1998; Deutsch et al., 1995;

Przegalinski et al., 1996; Urbanska et al., 1996). However,

it has been reported that L-NAME can impair the anticon-

vulsant effects of valproate and phenobarbital against

maximal electroshock in mice (Borowicz et al., 1998).

Both the opioid system (Salzet and Stefano, 1997) and

the nitricoxidergic pathway (Stefano et al., 1996) have been

well preserved through evolution and show interrelatedness

in many central (Calignano et al., 1993; Duarte and

Ferreira, 1992; Elliott et al., 1994) as well as peripheral

(Fecho et al., 1994; Ferreira et al., 1991) phenomena. NO

exerts a dual role as a modulator (Brignola et al., 1994;

Przewlocki et al., 1993) or a mediator (Duarte and Ferreira,

1992; Ferreira et al., 1991) of opioid-induced antinocicep-

tion, while NOS inhibition attenuates the development of

morphine tolerance (Elliott et al., 1994; Kolesnikov et al.,

1993). Moreover, in pathological conditions like acute

cholestasis, which is associated with increased plasma

levels and increased activity of endogenous opioids (Ber-

gasa et al., 1994; Dehpour et al., 2000; Swain et al., 1992),

the production of NO is also increased (Inan et al., 1997;

Nahavandi et al., 1999) and a number of opioid-induced

effects including antinociception (Dehpour et al., 1998),

naloxone-precipitated withdrawal (Dehpour et al., 1998;

Ghafourifar et al., 1997), gastroprotection (Nahavandi et

al., 2001; Sadr et al., 1999), and vascular hyporesponsive-

ness (Namiranian et al., 2001) are reversible by NOS

inhibitors. NO is also involved in the rewarding effects of

morphine and, in this regard, recently local NO synthesis in

hippocampus and nucleus accumbens has been implicated

(Gholami et al., 2002; Karami et al., 2002; Kivastik et al.,

1996). Both of these areas are also important in seizure

susceptibility. Recently, a distinct class of mu-opioid recep-

tors, which are located on the vascular endothelium and are

closely related to NO production, has been identified

(Cadet et al., 2000; Stefano et al., 2000). These receptors

couple NO to morphine-induced neurotransmitter release in

some central sites (Prevot et al., 1998; Stefano et al., 1997).

Interestingly, the anticonvulsant effect of morphine is

completely reversible by mu-receptor-sensitive doses of

naloxone (the present data; Berman and Adler, 1984;

Czuczwar and Frey, 1986). Our recent study using a

pentylenetetrazole model of seizure showed that the inhibi-

tion of NOS blocks the anticonvulsant effect of lower doses

of morphine completely and decreases the proconvulsant

effects of higher doses of morphine partially (Homayoun et

al., 2002a). Moreover, the inhibition of NO synthesis

blocked the opioid-mediated increased susceptibility of

cholestatic mice to pentylenetetrazole-induced seizures

(Homayoun et al., 2002b). The molecular mechanisms of

morphine interaction with NO may involve the modulation

of intracellular calcium transients by morphine (Nieto-

Fernandez et al., 1999), leading to the activation of

Ca2 + /calmodulin-dependent NO synthase. Moreover,

opioids can selectively alter the expression of different

isoforms of NOS in various brain areas (Cuellar et al.,

2000; Lanier et al., 2002; Lysle and Carrigan, 2001; Wong

et al., 2000). A further interaction takes place in the

mediation of morphine-induced changes in immediate-early

gene c-Fos expression in brain areas like the striatum by

NO of neuronal origin (Harlan et al., 2001).

In the present study, low and noneffective doses of

L-NAME and naloxone per se showed additive effects in

blocking the anticonvulsant property of morphine. A similar

potentiation between the opioid receptor antagonist and the

NOS inhibitor has been recently reported in some other sites

(Komjati et al., 2001; Nahavandi et al., 2001), and their

parallel inhibitory effects against morphine in this model of

seizure warrant further investigation. Although the low doses

of naloxone used here are dominantly mu-opioid receptor

antagonists, the type of opioid receptor interacting with NO in

this effect cannot be concluded here.

Three different forms of NOS have been identified,

which include either inducible or constitutive (itself divided

to neuronal and endothelial) NOS (Moncada and Higgs,

1993). In the nervous system, neuronal nitric oxide synthase

(nNOS) is largely responsible for NO production (Bredt and

Snyder, 1990), while iNOS is also reported to be present in

normal adult brains and to contribute to the pathophysiology

of many neuronal diseases (Licinio et al., 1999). In the

present study, the specific irreversible iNOS inhibitor,

aminoguanidine, did not alter the ECS threshold or intensity,

either per se or concomitant with morphine. This finding

implies that the observed involvement of NO in morphine
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effect is not mediated by iNOS. L-NAME is a nonspecific

inhibitor of all isoforms of NO synthase but the ineffective-

ness of the specific inducible NOS inhibitor in this paradigm

suggests the involvement of constitutive NOS in the effect

of morphine. In this regard, constitutive NOS consists of

nNOS that may play the key role in this interaction, plus

endothelial nitric oxide synthase (eNOS), which may also

contribute to this effect through the modulation of cerebral

blood flow (Licinio et al., 1999; Wiesinger, 2001). In

addition, drugs that modify the concentration of NO in the

central nervous system are reported to alter the uptake and

the distribution of morphine in the central and peripheral

tissues (Bhargava and Bian, 1997, 1998). However, it

should be noted that NO exerts differential effects on

various morphine-induced properties and all these effects

cannot be consistently explained by NO-induced alterations

in central morphine penetration and distribution. In conclu-

sion, NO seems to have a role in the anticonvulsant property

of morphine against ECS and this role involves constitutive

NOS.
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